圆的弦长公式是什么,椭圆的弦长公式是什么是弦长=2Rsina,R是半径,a是圆心角;弦长为连接圆上任意两点的线段的长度的。
关于圆的弦长公式是什么,椭圆的弦长公式是什么以及圆的弦长公式是什么,抛物线的弦长公式是什么,椭圆的弦长公式是什么,抛物线中过焦点的弦长公式是什么,扇形弦长公式是什么等问题,小编将为你整理以下知识:
圆的弦长公式是什么,椭圆的弦长公式是什么
弦长=2Rsina,R是半径,a是圆心角;
弦长为连接圆上任意两点的线段的长度。
弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。
圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
在三角形ABC中,它的外接圆半径为R,则正弦定理可表述为:
a/sinA=b/sinB=c/sinC=2R,即a=2RsinA,b=2RsinB,c=2RsinC。
(x-4)^2+y^2=16被直线y=(根号3)x所截得弦长
圆(x-4)^2+y^2=16与直线y=(根号3)x的一个交点恰为原点O(0,0),另一个交点记为A,则OA就是圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦,若记圆与x轴的另一个交点为B,则三角形OAB就是一个直角三角形,其中∠AOB=60°,∠OAB=90°,OB=2R,所以
OA=2Rcos∠AOB=2Rcos60°=R。
又圆的半径为4,所以圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦长为4。
椭圆的弦长公式是什么?
圆的弦长公式为:AB=|x1-x2|√(悔伏辩1+k)=|y1-y2|√(1+1/k)。
解析:
弦长为连接圆上任意两点的线段的长度。
弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。
圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,碧缺双曲线,抛物线等。
椭圆的弦长相关延伸:
1、焦点弦:A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex。
2、设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则|P1P2|=|x1-x2|厅州√(1+K)或|P1P2|=|y1-y2|√(1+1/K)。
版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(http://www.zengtui.com/)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3933150@qq.com 举报,一经查实,本站将立刻删除。
版权声明:本文内容由作者小仓提供,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至907991599@qq.com 举报,一经查实,本站将立刻删除。如若转载,请注明出处:https://www.shaisu.com/194744.html