为什么负负得正怎么推理,乘法为什么负负得正是根据相反数的定义,如果一个数与a的和为0,那么这个数就叫做a的相反数,记作-a的。
关于为什么负负得正怎么推理,乘法为什么负负得正以及为什么负负得正怎么推理,为什么负负得正原因是什么,乘法为什么负负得正,为什么负负得正图解,为什么负负得正用数轴解释等问题,小编将为你整理以下知识:
为什么负负得正怎么推理,乘法为什么负负得正
根据相反数的定义,如果一个数与a的和为0,那么这个数就叫做a的相反数,记作-a。
即-a+a=0。
对任何实数a,定义加法0+a=a,乘法1*a=a。
实数的加法和乘法满足交换律、结合律以及分配律,等式还满足等量加等量和相等,等量减等量差相等的规律。
两个正数的积还是正数。
乘法负负得正的原因
1、美国数学史bai家du和数学教育家M·克莱因通zhi过负债模型解决了“两负数相乘得正”的问题:
一人每天欠债5元,给定日期(0元)3天后欠债15元。
如果将5元的宅记作-5,那么“每天欠债5元、欠债3天”可以用数学来表达:3×(-5)=-15。
同样一人每天欠债5元,那么给定日期(0元)3天前,他的财产比给定日期的财产多15元。
如果我们用-3表示3天前,用-5表示每天欠债,那么3天前他的经济情况课表示为(-3)×(-5)=15。
2、相反数模型
5×3=5+5+5=15,(-5)×3=(-5)+(-5)+(-5)=-15。
所以,把一个因数换成他的相反数,所得的积就是原来的积的相反数,故(-5)×(-3)=15。
3、苏联著名数学家盖尔范德(I.Gelfand,1913~2009)则作了另一种解释:
3×5=15:得到5美元3次,即得到15美元。
3×(-5)=-15:付5美元罚金3次,即付罚金15美元。
(-3)×5=-15:没有得到5美元3次,即没有得到15美元。
(-3)×(-5)=+15:未付5美元罚金3次,即得到15美元。
为什么负负得正
13世纪末由数学家朱士杰给出,在《算学启蒙》(1299)中,朱士杰提出:“明乘除法,同名相乘得正,异名相乘得负”。
在数学乘法中为什么负负得正
在数学乘法中负负得正的原因解释有:
1、美国数学史家和数学教育家M·克莱因通过负债模型解决了“两负数相乘得正”的问题:
一人每天欠债5元,给定日期(0元)3天后欠债15元。
如迟吵搭果将5元的宅记作-5,那么“每天欠债5元、欠债3天”可以用数学来表达:3×(-5)=-15。
同样一人每天欠债5元,那么给定日期(0元)3天前,他的财产比给定日期的财产多15元。
如果我们用-3表示3天前,用-5表示每天欠债,那么3天前他的经济情况课表示为(-3)×(-5)=15。
2、相反数模型
5×3=5+5+5=15,(-5)×3=(-5)+(-5)+(-5)=-15,
所以,把一个因数换成他的相反数,所得的积就是原来的积的相反数,故(-5)×(-3)=15。
3、苏码拿联著名数学家盖尔范德(I.Gelfand, 1913~2009)则作了另一种解释:
3×5=15:得到5美元3次,即得到15美元;
3×(-5)=-15:付5美元罚金3次,即付罚金15美元;
(-3)×5=-15:没有得到5美元3次,即没有得到15美元;
(-3)×(-5)=+15:未付5美元罚金3次,即得到15美元。
上述内容参考《数学阅读精粹(第一册)》,江苏凤凰教育出版社出版,2016年6月。
原载于《数学文化透视》,上海科学技术出版社出版。
扩展资料:
负数概念最早出现在中国,在碰衡《九章算术》中方程章给出正负数的加减运算法则,而负负得正直到13世纪末才由数学家朱士杰给出。
在《算学启蒙》(1299)中,朱士杰提出:“明乘除法,同名相乘得正,异名相乘得负”。
公元7世纪,印度数学家婆罗笈多(brahmayup-ta)已有明确的正负数概念,及其四则运算法则:“正负相乘得负,两负数相乘得正,两正数得正。
”
参考资料来源:百度百科-负数
版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(http://www.zengtui.com/)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3933150@qq.com 举报,一经查实,本站将立刻删除。
版权声明:本文内容由作者小仓提供,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至907991599@qq.com 举报,一经查实,本站将立刻删除。如若转载,请注明出处:https://www.shaisu.com/195491.html