幂函数和指数函数区别在哪儿,幂函数和指数函数的区别是什么是定义不同,从两者的数学表达式来看,两者的未知量X的位置刚好互换的。
关于幂函数和指数函数区别在哪儿,幂函数和指数函数的区别是什么以及幂函数和指数函数区别在哪儿,幂函数和指数函数区别在哪,幂函数和指数函数的区别是什么,幂函数和指数函数的关系,幂函数和指数函数哪个变化快等问题,小编将为你整理以下知识:
幂函数和指数函数区别在哪儿,幂函数和指数函数的区别是什么
定义不同,从两者的数学表达式来看,两者的未知量X的位置刚好互换。
图像不同:指数函数的图象是单调的,始终在一、二象限,经过(0,1)点;
幂函数需要具体问题具体分析。
指数函数和幂函数
1、计算方法不同
指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;
当0<a<1时,函数是递减函数,且y>0.
幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。
a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
2、性质不同
幂函数性质:
(1)正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0)。
b、函数的图像在区间[0,+∞)上是增函数。
c、在第一象限内,α>1时,导数值逐渐增大;
α=1时,导数为常数;
0<α<1时,导数值逐渐减小,趋近于0。
(2)负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1)。
b、图像在区间(0,+∞)上是减函数;
(内容补充:若为X-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
(3)零值性质
当α=0时,幂函数y=xa有下列性质:
y=x0的图像是直线y=1去掉一点(0,1)。
它的图像不是直线。
指数函数性质:
(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。
对于a不大于0的情况,则必然使得函数的定义域不连续,因此不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增;
若0<a<1,则为单调递减的(图2)。
(5)可以看出,就是当a从0趋向于无穷大的过程中(不等于0),函数曲线分别趋向于接近y轴正半轴和x轴负半轴单调递减函数的位置,以及单调递增函数的位置。
Y轴的正半轴和X轴的负半轴。
水平线y=1是由减到增的过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7)指数函数无界。
(8)指数函数是非奇非偶函数。
指数函数具有反函数,其反函数是对数函数,它是一个多值函数。
幂函数的单调区间
当α为整数时,α的正负性和奇偶性决定了函数的单调性:
①当α为正奇数时,图像在定义域为R内单调递增。
②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。
③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。
④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。
当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性:
①当α>0,分母为偶数时,函数在第一象限内单调递增。
②当α>0,分母为奇数时,函数在第一三象限各象限内单调递增。
③当α<0,分母为偶数时,函数在第一象限内单调递减。
④当α<0,分母为奇数时,函数在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。
指数函数和幂函数的区别在哪里?
指数函数幂函数有以下区别:
-
函数表达式不同。
幂函数表示为y=x^a,而指数函数表示为y=a^x(a>0,且a≠1)。
-
定义域和值域不同。
幂函数的定义域和值域随改猜蠢着a的取值不同而核陪变化,而指数函数的定义域恒为R,值域恒为(0,+∞)
-
增长率不同。
指数函数图像的增长比幂函数快的多,所以有“指数爆炸”的说法。
-
函数性质不同。
幂函数可能是奇函数兆世或者偶函数,而指数函数永远是非奇非偶函数。
版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(http://www.zengtui.com/)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3933150@qq.com 举报,一经查实,本站将立刻删除。
版权声明:本文内容由作者小仓提供,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至907991599@qq.com 举报,一经查实,本站将立刻删除。如若转载,请注明出处:https://www.shaisu.com/197173.html